back pain at the local region. However, PPTs at distant sites improved considerably following PA mobilisation when compared to the manual hand placement.

Keywords: Manipulative therapy, manipulation, neurophysiology, mechanical low back pain

Reference:

P124 - SELF-HELP TREATMENT FOR LOW BACK PAIN AND STRESS: A PILOT STUDY EMPLOYING A MYOFASCIAL MANIPULATION TOOL

Gordon C.-M.1,2, Graf C.1, Lindner S.M.1, Wagner M.1, Birbaumer N.2, Andrasik F.3

1Center for Integrative Therapy, Stuttgart; 2Institute of Medical Psychology and Behavioral Neurobiology, University of Tubingen, Germany; 3Dept. of Psychology, University of Memphis, USA

Introduction: A tool-assisted tissue manipulation was performed on the lower back, hip, upper leg and abdomen muscles as a form of a self-help treatment we term the interdisciplinary fascia therapy (IFT method).

Purpose/Aim: The aim of this study was to explore the practicality of this self-help modality and to assess the effectiveness of an instrument-based myofascial self-treatment technique, combined with a vibrational breath pace-maker training (heart rate variability HRV) on the solar plexus (diaphragm) to stimulate vagal tone.

Materials and Methods: 14 participants were recruited in order to field test this novel tissue manipulation self-help device for treatment of the multifidi, quadriceps, iliotibial band bilaterally, and the abdominal muscles. The tool under investigation, the Fascia-ReleaZer, is designed to perform a myofascial release that is combined with a vibrational oscillator and a soft-tipped nosed tool. It is augmented by HRV deep breathing training induced with a vibrational pace-maker (Fascia-ReleaZer) on the solar plexus twice per day. The self-help treatment was performed for a period of three weeks three times per week. The following parameters were measured, with lumbar position and posture held constant to ensure standardization, prior to treatment, immediately following treatment completion (3 weeks), and at a 2-month follow-up: stiffness, elasticity (MyotonPRO), indentometer-stiffness (modified indentometer algometer), range of movement ROM of the thoracic and lumbar spine (extension/flexion, lateral flexion, rotation measured with Mobee Med, an objective measurement based on the neutral zero method), pain intensity (Brief Pain Inventory BPI questionnaire), pain disability (Pain Disability Index PDI questionnaire), HRV vagal tone analysis (HRV Scanner Biosign) and a modified stress questionnaire MSQ (with ratings performed for 24 hours, 1 week, and 1 month sensitization of stress). Statistical analysis included paired t-tests and Cohen’s d to gauge strength of effect. This study was undertaken in accordance with the Declaration of Helsinki.
Results: Analysis of the data shows improvements for nearly all parameters pre to post: A significant decrease in pain intensity (p<0.001) (BPI), pain disability (p=.0013) (BPI), stress sensitization (p=.0287) (MSQ), with a trend for pain reduction in the pain disability index (PDI). ROM of the thoracic and lumbar spine (Mobee Med) showed a significant increase for extension (p=.001), flexion (p=.0125), lateral flexion to left (p=.004), lateral flexion to right (p=.0136) and a trend to more left and right hand rotation. A HRV coherence baseline test (vagal tone, HRV Scanner Biosign) showed a trend to improvement, with a similar trend appearing for general pulse lowering. Cohen's d revealed medium to large effect sizes for nearly all significant primary measures of outcome. Results for the 2-month follow-up are pending.

Conclusions: Application of self-help treatment with a muscle fascia tool resulted in clinically relevant improvements on all objective mechanical tissue properties. Pain reduction and range of movement improved significantly. Stress scores were also reduced significantly. Tool-assisted self-treatment with the IFT method is possibly an effective self-treatment modality for chronic low back pain. Our preliminary findings support the need for further research (more well-controlled trials, inclusion of larger sample sizes, more extended follow-up periods, among other aspects).

Keywords: Myofascial Self-help Therapy; Tool-Assisted Myofascial Manipulation, Fascia-ReleaZer, HRV training, vagal tone stimulation, IFT method

References:

P125 - OSTEOPATHIC MANIPULATIVE TREATMENT IN CHRONIC COCCYDYNIA: RADICULAR PAIN IMPLICATIONS

Origo D.
Istituto Osteopatia Milano (SOMA) Milan, Italy

Background: Coccydynia is a pain–discomfort all around the bottom end of the spine. Coccygectomy represents an option for treating coccydynia in case of failure of conservative treatment. The role of osteopathic manipulative treatment in chronic Coccydynia associated with radiculopathy was never investigated.

Purpose: To analyse the effect of osteopathic manipulative treatment (OMT) on coccydynia. To assess, in secondary outcome, the radicular pain associated with coccydynia. To compare OMT and/or physical therapy/ pharmacological treatment.

Methods: Fifty subject (age 39,94±15,34 BMI 21,22±3,15) complained of chronic coccydynia, twenty-seven of which had radicular pain. Patients were assessed three times: before and after physical therapy or pharmacological treatment, after OMT. Patients were treated with drugs or physical therapy during the first three months and then referred by physicians for receiving three session of OMT over a period of five weeks. Each OMT session consisted mainly of spine mobilization, myofascial technique on the pelvic floor, hypogastric and suboccipital region; finally the treatment included intra-rectal manipulation. Before starting OMT every subject was asked to report the level of pain and their disability before commencing treatment by using medications and exercises. That involved the use of a visual analogue scale (VAS 0-10 cm) and the Oswestry Low Back Pain Disability Questionnaire (OLBPDQ). Moreover, at the beginning and at the end of OMT every subject was asked to rate their pain and to answer the OLBPDQ for the assessment of disability.